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ABSTRACT

Using a normalized set of nonlinear equations, which
4r

describe an FEL, oscillator, the efficiency of energy

extraction from the electron beam to the radiation can be

optimized. The optimum values of this efficiency are

presented for an (a) untapered and for a (b) tapered wiggler

FEL oscillator.
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I. INTRODUCTION

The generation of a high-power coherent radiation using stimulated

emission from an intense relativistic electron beam moving in a static

undulating magnetic field has received considerable interest lately. The

device based on this effect, known as a free electron laser, has the

great advantage of being readily tunable over a wide frequency range,

from submillimeter to optical wavelengths, by varying the electron beam

energy. Many applications can be found for an FEL, for example, electron

cyclotron resonance heating (ECRH), diagnostics, isotope separation, and

radar.1 ,2  In all these applications high efficiency is desirable. As is

well knnwn, to have a high efficiency free electron laser one must

appropriately taper the wiggler parameters. 3- 5  Such tapering enhances

dramatically the energy transferred from the relativistic electron beam

to the coherent electromagnetic wave.

The goal of this paper is to present calculations that enable one to

design an FEL oscillator in such a way that it will operate with the

maximum efficiency. Our approach is complementary to the usual procedure

of attempting to simulate a particular experiment with a high degree of

accuracy, including as many effects as possible. Instead, we will make

as many approximations as possible (some better than others) in order to

reduce the complexity and dimension of parameter space. In addition,

using a normalized set of equations to describe the FEL interaction the

number of the parameters can be further reduced. In the nontapered case

there are only two, one is related to the initial beam energy and the

second is the normalized beat wave amplitude. For a tapered FEL the

number of parameters is, of course, greater. In fact, one must specify
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two free functions; one describing the profile of the wiggler strength,

and the other the profile of the wiggler period. In this paper these

functions will be represented in terms of simple functions characterized

by a few parameters. Other simplifications include neglecting transverse

mode structure and self-fields, and adopting the low gain limit. While

the determination of the transverse mode structure is important in

particular devices one can argue that in an "optimal" device all

electrons should experience the same radiation field, and thus will gain

or lose energy as in a one-dimensional model. The problem of self-fields

is somewhat different. Preliminary calculations have shown that

inclusion of self fields puts strong limitations on the rate of taper

that can be effective in an FEL. 5  We will defer the consideration of

self-fields to a future publication. Consideration of the high gain

limit adds an extra parameter, namely the beam current, so we will focus

on the simpler problem of the low gain regime where the field profile is

specified. We divided this paper in the following way. In Sec. II we

describe the basic equations which describe the dynamics of the system

and taper design. In Sec. III the numerical simulation and results are

presented and discussed. Finally, in Sec. IV we draw the conclusion of

our calculations and point out some future studies and simulations.
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II. BASIC EQUATIONS

In an FEL the motion of the electrons is affected by the combined

wiggler magnetic field

~Z

wx x A wo()cos f k w(z')dz' (1)

and radiation field

i(k z - wt)
x A se + c.c. (2)

S s.

% which propagates along the z-direction. With the given fields, the

dynamics of the electrons can be described by the standard one-

dimensional pendulum equation
1

Ai.= 6, a I + (1/2)K 2
dz c 3 ' ) 3 (3a)

d ( +a [-As0 et* + qAs -i (3b)
da- R +  C(YRez) mc2  Imc 2

0 where
qAw0

mc

is the wiggler parameter, 8z is the longitudinal velocity (normalized to

the speed of light) of the relativistic electron beam, YR(z) is the

resonant value of y which is required to keep the particle motion in

phase with the ponderomotive wave. The variation of the particle energy

in I
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represents a small deviation of the particle energy from the resonant

energy, while the phase of a particle in the beat wave potential is given

by

z
=f kw(z-)dz' + ksz -Wt

The profile for the resonant energy YR is selected in the following

way

YR(Z) = YR(O) - nb[YR(0) - ll(z/L)P , (4)

where L is the interaction length and YR(O) is the value of YR at the

entrance.

The parameter nb gives the total change in YR in the interaction

length and is defined such that if all particles remained trapped in the

beat wave the resulting efficiency of energy extraction would be nb. The

parameter p describes the profile of the deceleration along the

interaction length. If p = I the rate of deceleration is constant. In

practice we will find that higher values of p are desirable because these

give a weaker deceleration at the entrance of the interaction region than

at the exit. Such a profile of deceleration is required for an

oscillator that is to start from noise.

To simplify and reduce the number of parameters in Eqs. (3a) and

(3b) we will make a number of apnroximations. First, we will assume that
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the axial velocity Bz of a particle is independent of axial position in

the interaction region and equal to its value at injection. Further, we

will assume that the variation of yR in the interaction region is also

weak and we will consider y. to be independent of z (and equal to its

value at injection) except in Eq. (3b) where it is explicitly

differentiated. These approximatons are valid for devices with small

efficiencies nb << 1. Furthermore, we will assume that the wiggler
2

parameter K is small so that (1/2)K2 can be neglected compared with I in

Eq. (3a). While these approximations are not always justified and indeed

not needed for a numerical integration of Eqs. (3a) and (3b) they allow

us to recast Eqs. (3a) and (3b) in the following form

-_ a =H (5a)

dP 3Hd a * (5b)

where the normalized distance E is given by,

= z/L

and

H P2 2 sinp + pa

is the interaction Hamiltonian. The normalized "momentum" is given by

p = 6Y wL .3(6)
C(Y RS z )
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The normalized beat wave amplitude is

awo (&)aso (7)
(Y Na) 4

and normalized deceleration term due to tapering is

1 ayR
c (YRSzY )3 az

Roughly speaking, %b/27r is the number of synchrotron oscillations a

particle will experience in the interaction region. Using the profile

for yR(z) given in Eq. (4), we obtain

a = - ,p (9)

where

Pb b ) = ) (10)

represents the normalized "bucket" efficiency.

Equations (5a) and (Sb) are integrated numerically for an ensemble

of electrons whose initial phases are distributed uniformly between 0 and

2w, and whose initial momenta are all equal to Pinj* The normalized

efficiency is determined from the average of the momentum for the exiting

electrons and is given by

AP = PinJ + Pb - <P(1)> , (1l)

where the angular bracket's indicate an average over the initial phases.



The actual efficiency is determined from Eqs. (6) and (11),

(-S() RZ AP (12)

There still remains one free function to specify which is the

profile of the wiggler strength. In our model in which we specify

independently the profile of the wiggler strength and resonant energy the

profile of the wiggler strength only enters explicitly the coupling

coefficient between the radiation and the particles. However, it must be

remembered that in practice different profiles of wiggler strength will

require different profiles of wiggler period in order to maintain the

prescribed profile of resonant energy.

To incorporate the effect of a spatially varying coupling

coefficient we specify the profile of the beat wave amplitude to be

21 = 2f() (13)

2
where Sb0 is the amplitude defined by Eq. (7) with the nominal value of

awO, and f( ) is a profile function describing variations of awo over the

interaction length. The profile we choose is given by

9 { /o ' & < O (14)

1 C()

This profile, which provides a weaker ponderomotive wave at the entrance

than at the exit allows particles to become more deeply trapped in the

ponderomotive wave when it reaches maximum amplitude. This effect will

be illustrated later. As we can see, the number of parameters on which
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the normalized efficiency depends is five, namely

AP = AP(Pn a 2 9 Pi' ~bO b" P1

The last three parameters characterize the tapering design. The

parameters Pb and p are related to the deceleration of the particles

trapped in the ponderomotive potential well. These parameters can be

controlled and adjusted by changing the wave period of the wiggler field

or the strength of the wiggler magnetic field. The parameter E0

controls the distance at which the height of the ponderomotive well

reaches its maximum value.

In the following sections we find numerically the maximum value of

AP with respect to P and plot it as a function of a or given values

of P b' p. and E0.
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III. SIMULATION AND RESULTS

A. Untapered FEL

In the untapered case the efficiency is a function of two

parameters, i.e., AP = I S10 Level curves of AP in the

2 2% Pinj' b plane appear in Fig. (1) for Qb < 45 P inj 15. A maximum

2
occurs at P inj 5.14, a b 18.0 where AP = 5.5. Additional local

2 
25ad =1.9 n bPn

maximum appear at Q = 35 and P 10.29 and 2 25, and = 11.5.22

Further increasing the range of 2 and P would reveal additional
b inj

maxima. Figure (2) shows level curves of b /AP which is proportional to

the beam current required to maintain energy balance at a particular

value of 2 and Pinj" A plot of AP maximized over Pinj for a given value

of Qb appears in Fig. 3. From this curve, we observe the two values of2

b02 for which the extracted energy from the beam is maximum. The two

maximum values are almost equal. Also, we note that the behavior of the

maximized AP' has a cusp at n2 . 26. For this value of b02 the value of

energy extracted AP as a function of Pinj has a much broader maximum.

This is clearly shown in the level curves of Fig. (1).

B. Tapered FEL

As we already discussed, in the tapered FEL the energy extracted aP

depends on five parameters, P ' 2' ' and &. For this case the

parameters QbO' p, &O' and P will be considered given, and AP will be

maximized over values of Pinj"

Figures 4a and 4b show the behavior of the energy extracted for a
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tapered wiggler with a constant wiggler parameter 0 = 0 in Eq. (13) and

for a value of p = 1 and p = 1.5. As can be seen in Fig. (4a) where a

constant rate of taper is present the normalized efficiency is low until

a sufficiently large amplitude is imposed to trap a significant fraction

of particles. Clearly, an oscillator with this type of efficiency vs.

field strength curve would not be able to start from noise and attain

high values of signal field. This problem is resolved in Fig. (4b) where

the profile in the gradient of the resonant energy is tapered (p = 1.5).

Here the efficiency vs. field strength curves are such that an oscillator

could start from noise. The physical reason for the improved performance

0 is that electrons feel a gradually increasing deceleration force as they
S.

propagate through the interaction region. Whereas, for the case of Fig.

(4a) electrons feel a constant deceleration gradient. Thus, at low

signal field strengths in the case of the tapered gradient (4b) electrons

are trapped at the entrance and partially decelerated before becoming

detrapped while in the case of the constant gradient the ponderomotive

wave is not strong enough to trap any electrons.

The overall efficiency of trapping can be gauged by comparing the

normalized efficiency with the value of Pb" If all particles were

trapped these two numbers would be roughly equal. Thus, we can see from

Fig. (4b) that trapping efficiencies between 45 and 70% are realized at

the strongest fields.

The trapping efficiencies can be enhanced considerably by tapering

the coupling coefficient. In Figs. (Sa) and (5b) we have plotted

normalized efficiency vs. field strength for tapered wigglers with

p = 1.5 (5a) and p = 2.0 (5b) and the profile of the wiggler strength

given by Eqs. (13) and (14) with &0 = 0.3. The reason for the observed
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improvement is as follows. When particles enter the interaction region

they feel a relatively weak ponderomotive wave compared with what they

will feel throughout most of the interaction region. Thus, the momentum

of these particles is modified by a small amount compared with the

ultimate size of the ponderomotive well. This small amount, however, is

adequate to cause the particles to become bunched in phase as they

propagate further into the interaction region. Once they are bunched in

phase they can be trapped at the bottom of the well of a larger

ponderomotive field. This effect is also illustrated in Fig. 6. The

effect is analogous to the operation of a klystron where the particles

_4 are bunched in a field free region.

Figure 7 shows the effect of varying the exponent p in the profile

of the resonant energy for different values of "bucket" efficiency. It

appears that a profile with p = 2 gives the optimum efficiency (we have

verified that at higher values of p the efficiency degrades).

.9

0 .. •!..
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IV. CONCLUSION

In the case of an untapered FEL oscillator using a normalized set of

nonlinear equations we produced curves of equal energy extraction AP in

the Pinj I plane. Optimizing AP with the respect of Pinj' allowed usbh Pinj' al o ed u

2
to plot the optimum value of AP versus b"

In the case of a tapered FEL oscillator we have considered the

effect of variation of the profile of wiggler strength and resonant

energy on the achievable efficiencies in low gain free electron laser

oscillators. The optimum profile of resonant energy appears to be one

which is quadratic in distance down the interaction length (p = 2)

although nearly the same results can be achieved with profile that is

somewhat closer to linear (p = 1.5). Such tapering of the resoniant

energy is necessary if the oscillator is to start from noise.

Secondly, we have found that the trapping efficiency can be enhanced

if the strength of the coupling coefficient (wiggler strength) is tapered

in such a way that particles are prebunched at the entrance and then

trapped further down the interaction region. The universal plots in

Figs. (3) - (5) allow one to estimate the maximum achievable efficiency

and corresponding tapering profiles for an interaction length of a given

number of synchrotron oscillations (SbO/27).
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FIGURE CAPTIONS

Fig. 1. The equal energy extraction AP curves in the Pinj b plane.
2

Pinj is the initial normalized momentum and ab the normalized

value of the beat-wave amplitude. The curve 1 corresponds to

AP = 0, the curve 2 corresponds to AP = 5.5. The difference

between the neighboring level curves is 0.5.

2 inte2Fig. 2. The level curves of I = iAP, in the Pinja plane. is

proportional to the beam current required to maintain energy
2

balance at a particular value ab and n The numbers on the

curves indicate the value of I.

Fig. 3. Optimum AP vs beat wave amplitude for an untapered wiggler.2

Fig. 4. AP versus sb curves for a tapered wiggler with C0 - 0, (a)

p = 1, (b) p = 1.5, and P b = 200 + 1000.

Fig. 5. Similar to Fig. 4, with 0 = 0.3, (a) p = 1.5, (b) p = 2 and

Pb = 200 + 1000.

Fig. 6. Comparison in C0 for p = 1.5 for a tapered wiggler with (a)

Pb - 200, (b) Pb = 400, (c) P b = 600, (d) Pb - 800, and (e)

Pb= 1000.

Fig. 7. Comparison in p between efficiency curve for a tapered wiggler-

with 0= 0.3 and (a) Pb - 200, (b) Pb = 400, (c) Pb in600, (d)

Pb= 800 and (e) Pb 1 1000.
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